OPEN-FILE REPORT LAKE DEPOSITS--Silt and clay deposits with some beds of fine sand or sand and gravel, deposited in glacially dammed lake . Smooth, gentle slopes of former lake bottoms; dissected locally by modern streams. Distribution along stream valleys or at the head of minor drainages; primarily at elevations above 200 m. Runoff high and infiltration low because of low permeability. Springs may occur along upslope contacts with alluvium or slope deposits. May be saturated at or near the surface; water may collect at the surface because of low infiltration and permeability. Water-yielding capability poor. However, excavations usually fill with water due to slow seepage of water from near-surface sediments. Percolation rates very slow. Unless these deposits are penetrated, liquid wastes tend to collect at the surface SLOPE DEPOSITS--Colluvium and landslide deposits Mixed deposits of bedrock fragments and reworked glacial drift; includes some well to poorly sorted sand and gravel, and some unreworked glacial drift. Generally smoothly sloping talus fans and cones near steep bedrock exposures, merging into smooth valley deposits that are extensive in some places. Steeply sloping deposits on bluffs along major stream valleys. Distribution common on steep hillsides and in valleys above 400 m and along steep valley walls at lower elevations. Thin deposits of colluvium are common downslope from bedrock outcrops. Runoff low except where deposit is compacted; infiltration and permeability high, allowing rapid downward flow. At high altitudes, these deposits are important sources of recharge to area aquifers. Typically unsaturated, except briefly after heavy rains, because of rapid drainage and downward movement of infiltrating water. Water-yielding capabilities poor. Usually too thin and sporadically saturated to provide reliable supply of water. Hydrogeologic characteristics related to onsite waste disposal generally unfavorable. Percolation rates are rapid and may not permit adequate attenuation of onsite waste before it reaches ground water MANMADE FILL--Chiefly gravel and sand, but may include some silt and clay, and commonly bordered by riprap (boulder-sized rock fragments). Primarily fill for roadbeds and railroad embankments. Mapped only where unusually extensive fills have been emplaced. Topographic expression consists of linear banks, often steepsided and as much as 10 m high. Some fill underlies virtually all roadbeds and railroad tracks; deposits extensive only along major roadways and railway embankments where they cross streambeds, incised valleys, and tidal flats. Emplacements are too small to have significant impact on drainage or recharge except locally; culverts prevent uphill ponding of water when properly built. Erosion of embankments, especially those with high clay or silt content, may add considerable sediment to water downstream. content unsaturated. Area unusable for further construction BEDROCK--Metamorphic rocks, primarily of McHugh Complex of Late Jurassic and (or) Cretaceous age, composed of metamorphosed siltstone, graywacke, arkose, and conglomeratic sandstone, and of greenstone associated with chert and argillite; near mouth of Little Rabbit Creek rocks of another complex include marble. greenstone, and cherty argillite (Clark, 1972). Mantle of colluvium or morainal deposits may cover bedrock locally. Boundary between bedrock and adjacent deposits is commonly a broad area of transition only approximated by contact on map. Steepsided mountain ridges and knobs. Bedrock exposed on steep slopes and ridge crests over large areas in eastern and southern part of area, particularly above 400 m and in smaller outcrops along steep slopes and ridges at lower elevations throughout area. Runoff high where bedrock exposed. Permeability and infiltration very low, except where bedrock is fractured or weathered. Unweathered bedrock has low porosity and low water content even when saturated. Where bedrock is fractured and (or) weathered, water content is higher but rarely very significant. Water-yielding capability generally poor. Yields of 0.05-0.3 L/s are obtainable from some weathered or fractured zones. Rare zones of highly fractured rock may yield 0.6 L/s or more. Limited quantities of ground water may be available at bedrockcolluvium interface. Hydrogeologic characteristics unfavorable for onsite waste disposal. Contaminants may travel quickly and far through fractures to reach wells or sur- ## REFERENCES face-water bodies that intersect them Clark, S. H. B., 1972, Reconnaissance bedrock geologic map of the Chumach Mountains near Anchorage, Alaska: U.S. @eological Survey Miscellaneous Field Studies Map MF-350, scale 1:250,000. Schmoll, H. R., and Dobrovolny, Ernest, 1972, Generalized geologic map of Anchorage and vicinity, Alasma: U.S. Geological Survey Miscellaneous Seologic Investigations Map I-787- 300 m in elevation. Alluvial fans and cones have greater relief, commonly at higher elevations. Distribution widespread, particularly near lower reaches of major modern streams. Low runoff, high permeability and rapid infiltration except where silt content is high. Includes the important aquifers in the DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 149°45'00" area. Commonly saturated at depths below 3-6 m, especially along modern stream channels. Water-yielding capability fair to good. Yields may be 0.6-2 liters per second (L/s) or more where saturated thickness exceeds 3 m. Hydrogeologic characteristics related to onsite waste disposal include moderate to high percolation rates, which locally may be too rapid for adequate attenuation of contaminants before they reach ground water rates moderate. Where compacted or containing considerable clay, permeability may be low and infiltration may be slow, causing water to collect in depressions. Usually unsaturated, except at depth in deposits greater tham 15 m thick. During wet seasons, perched water may exist at shallower depths. Water-yielding capability usually poor to fair because of low or moderate permeability; may be good where saturated lenses of sand and gravel present. Yields of 0.3-1.3 L/s have been obtained from such lenses. Hydrogeologic characteristics percolation rates that generally provide for adequate attenuation of pollutants, although liquids to perch at shallow depths, possibly silty or clayey horizons may cause percolating related to onsite waste disposal include contaminating local water supplies silt content or compaction cause lower permeability and infiltration. Generally unsaturated, except where silt beds at shallow depth have caused bogs to develop in depressions. Water-yielding capability generally poor. Deposits either unsaturated or too thin to yield significant quantities of water. Hydrogeologic characteristics generally unfavorable for onsite waste disposal. Percolation rates fair to poor; poor where high silt content or compaction reduces permeability causing inadequate infiltration of effluent and possibly return of effluent to land surface MARINE-GLACIAL DEPOSITS -- Interbedded fine sand, silt, and clay, with some beds of gravelly silt and some mixed gravel, sand, silt, and clay. Glacial till that has been extensively reworked slightly hummocky plains with nearly uniform slope. Distribution generally restricted to elevations below 200 m near lower Rabbit Creek. Runoff moderate although drainage patterns are poorly developed. Infiltration and permeability rates range from low to moderate; may be high locally in sandy material. Saturated only along most drainages. Water-yielding capability poor because of low to moderate permeability; also because deposits are too thin to vield significant amounts. Hydrogeologic characteristics related to onsite waste disposal generally consist of fair percolation rates and fair suitability, except where high silt or clay content cause lower permeability, rendering percolation rates inadequate GENERALIZED GEOLOGIC MAP AND HYDROLOGIC PROPERTIES OF POTTER CREEK AREA, MUNICIPALITY OF ANCHORAGE, ALASKA Henry R. Schmoll and Richard P. Emanuel